Environment&Sustainability Summer

[Agricultural Science] Modeling policy processes of agricultural, energy and climate policies

 

General information

Course name Modeling policy processes of agricultural, energy and climate policies
Course type  
Course code agrarAEF863-01a
Course coordinator  
Faculty Faculty of Agricultural and Nutritional Sciences
Examination office pruefungsamt@agrar.uni-kiel.de
Short summary Model based analysis of agricultural policy in industrial and developing countries, and particularly in the EU.Historical development of the European Common Agricultural Policy (CAP); national and supranational con-stitutional decision-making procedures of the CAP, relevant political actors and policy goals of the CAP aswell as of central agricultural policy frameworks in other countries, e.g. CAADP in African states; overview ofcentral political economy modeling approaches in the literature of comparative political economy.
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation  
Frequency Summer Term
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements Knowlegde in microeconomic modelling as well as modeling of economic policy (Module “Quantitative öko-nomische Modelle der Agrarpolitik” as well as Module ”Wirtschaftspolitische und politökonomosche Grundla-gen”).
   

Information about course content, reading material, and additional information

Course Content Students know the historical context and development of agricultural policies in industrial and developingcountries. They understand the central economic, demographic and institutional determinants of agriculturalpolicy. In particular, they are able to discuss the role of political institutions, interest groups and the votersas determinants of agricultural policy outcomes. They are able to analyze the impact of changed constitutio-nal rules as well as informal policy network structures on policy outcomes. They can analyze and evaluatethe impact agricultural policies on the economic development and the environment.
Reading list  
Additional information  

 

[Business Administration] Green Logistics

 

General information

Course name Green Logistics
Course type Lecture+Tutorial
Course code BWL-GrnLog
Course coordinator Professor Dr. Frank Meisel
Faculty Faculty of Business, Economics and Social Sciences
Examination office Faculty of Business, Economics and Social Sciences
Short summary This lecture deals with various problems of transport logistics, both under consideration of cost and service as well as from an environmental point of view. Methods of Operations Research are used in order to solve the resulting optimization problems.
   

Information about study level

Study level Master
Also possible for Second year Bachelor
   

Information about credit points, evaluation and frequency

ECTS 5
Evaluation Exam
Frequency Winter term
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements  
   

Information about course content, reading list and additional information

Course Content
  • Economic and ecological importance of the transport industry
  • Selected problems of transportation, route planning, location planning and choice of carriers
  • System of indicators to evaluate transport services from an economic, service-oriented and sustainability-oriented viewpoint
  • Determination and reduction of transport-related greenhouse gas emissions
  • Consideration of Emissions Trading Schemes
  • Concepts for the design of intermodal transportation chains and reverse logistic systems
Reading list

Corsten und Gössinger (2004). Produktionswirtschaft: Einführung in das industrielle Produktionsmanagement, Oldenbourg Verlag, 12. Auflage   Heizer und Render (2011). Operations Management. Pearson Verlag, New Jersey, 10. Auflage

Additional information  

[Economics] Environmental Valuation

 

General information

Course name Environmental Valuation
Course type Seminar
Course code  
Course coordinator  
Faculty Faculty of Business, Economics and Social Sciences
Examination office Examination office of the Faculty of Business, Economics and Social Sciences
Short summary The course provides a rigorous treatment of the theory of monetising the value of environmental externalities, focusing on the neo-classical approach but also discussing its alternatives. The student will learn about the categories of economic value assigned to the natural environment, and the distinction between use and non-use values. We will work through the utility theory on which environmental valuation techniques are based and learn how the individual approaches infer use and/or non-use values.
   

Information about study level

Study level Master
Also possible for Suitable for advanced Bachelors (second year)
   

Information about credit points, evaluation and frequency

ECTS 5
Evaluation Written exam
Frequency Summer term
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language recommended B2
   

Information about requirements

Recommended requirements  
   

Information about course content, reading list and additional information

Course Content
  1. Introduction: The nature of value
  2. Demand and welfare theory
  3. Cost-benefit analysis
  4. Stated preference methods: Contingent valuation
  5. Stated preference methods: Choice modeling
  6. Revealed preference methods: Defensive expenditures
  7. Revealed preference methods: Travel cost approach
  8. Revealed preference methods: Hedonic pricing
  9. Value transfer
  10. Alternative approaches: Ecological footprints, happiness research etc
Reading list Will be made available
Additional information  

Advanced / Profile Module Theoretical Chemistry / Computational Chemistry

 

MNF-chem3005D

Advanced / Profile Module Theoretical Chemistry / Computational Chemistry

Semester / Duration

Offered each half-year, winter or summer semester Duration: half a semester (also during lecture breaks)

Responsible Professor

Prof. Dr. Bernd Hartke, hartke@pctc.uni-kiel.de

Courses of Studies

M.Sc. in Chemistry: 3. Semester

compulsory elective

Classes

Name of Class / Lecturer

SWS

Status

Practical Course Theoretical / Computational Chemistry Prof. Dr. B. Hartke, Prof. Dr. D. Egorova,

Prof. Dr. R. Herges

10 SWS

compulsory

Seminar Theoretical / Computational Chemistry Prof. Dr. B. Hartke, Prof. Dr. D. Egorova,

Prof. Dr. R. Herges

2 SWS

compulsory

Number of Places

10

Language

English or German (as needed)

Word Load

Contact Hours: 168 h

Seminar preparation, self study: 132 h

Credit Points

10

Conditions

B.Sc. in Chemistry, B.Sc. in Biochemistry and Molekular Biology or B.Sc. in Physics

Desired Prerequisites

MNF-chem0503, MNF-chem1004D

Goals

  • Contact with a current research project at the current state-of-the-art
  • Application of theoretical knowledge to current research
  • Access to current research literature and planning one’s own research based on that, including time management
  • Performing calculations in a current research project, with analysis, critical assessment and interpretation of the results
  • Presentation and discussion of the results in a written and an oral report

Contents

  • If necessary, a short crash course in computer basics (operating system linux; programming languages Fortran, C, etc.; shell scripts)
  • Parallelization, communication and scaling, serial bottlenecks
  • Comparison of standard quantum-chemistry packages (Gaussian, Molpro, Turbomole, etc.): implemented methods, suitability for given hardware, input preparation and extraction of data from output (including scripted solutions)
  • Introduction to the computer hardware at CAU Kiel, including in particular cluster computers and queueing systems
  • Students do their own calculations with different programs on different platforms
  • Contact with current research in Theoretical / Computational Chemistry
  • Advanced treatment of an actual problem during several weeks, under supervision by a group member
  • Seminar: talks by lecturers and students on selected current and advanced topics, reports by students on their own calculation

 

Advanced course in Polar Ecology

 

General information

Course name Advanced course in Polar Ecology
Course type  
Course code bioc-266
Course coordinator Prof. Dr. Dieter Piepenburg
Faculty Faculty of Mathematics and Natural Sciences
Examination office Examination Office of the Department of Biology
Short summary The module provides in-depth information about dominant sympagic, pelagic and benthic organisms (including micro-organisms) and their specific environments in the polar regions of both hemispheres. The course will also cover topics of land-sea interactions, e.g. in estuaries and shelf ecosystems. Besides presen- ting the current knowledge on the general biology and ecology of these organisms, special topics such as threats, population status and conservation issues of habitats for individual species are also addressed with special respect to warming and subsequent man-made changes. The course is a combination of a series of lectures and a literature seminar with oral presentations of the students.
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 4
Evaluation Written Examination
Frequency Summer semester
   

Information about teaching language

Teaching language English
Minimum language requirement B2
Further information on the teaching language  
   

Information about requirements

Recommended requirements  
   

Information about course content, reading list and additional information

Course Content The objective of this module is to introduce students to the biology and ecology of polar environments in dif- ferent regions. After completion of the module, students should have a sound knowledge on diversity, habi- tats, life cycles, feeding ecology and adaptations in biology, physiology and behaviour of marine and terre- strial polar organisms.
Reading list  
Additional information  

 

Biologische Chemie / Biological Chemistry

 

MNF-chem2004D

Biologische Chemie

Semesterlage / Dauer

Angebot jährlich Dauer: 2 Semester

Modulverantwortliche(r)

Prof. Dr. Thisbe K. Lindhorst,: tklind@oc.uni-kiel.de

Studiengang / -gänge

M.Sc. Chemie: 1. – 3. Fachsemester

Wahlpflicht

M.Sc. Wirtschaftschemie: 1. – 2. Fachsemester

Wahlpflicht

M.Sc. Biochemie und Molekularbiologie: 1. – 3. Fachsemester

Wahl

Lehrveranstaltungen

Bezeichnung der Lehrveranstaltung / Lehrende(r)

SWS

Status

Vorlesung Bioorganische Chemie

Prof. Dr. Thisbe K. Lindhorst (Wintersemester)

2

Pflicht

Vorlesung Bioanorganische Chemie

Prof. Dr. Felix Tuczek (Sommersemester)

2

Pflicht

Vorlesung Molekulare Strukturbiologie Prof. Dr. Axel Scheidig (Sommersemester)

2

Pflicht

Praktikum für Biologische Chemie

Prof. Dr. Thisbe K. Lindhorst, Prof. Dr. Felix Tuczek, Prof. Dr. Axel Scheidig

4

Pflicht

Seminar für Biologische Chemie

Prof. Dr. Thisbe K. Lindhorst, Prof. Dr. Felix Tuczek, Prof. Dr. Axel Scheidig

1

Pflicht

Zahl der Plätze

16

Lehrsprache

Deutsch oder Englisch

Arbeitsaufwand

Präsenzstudium: 154 h

Selbststudium: 296 h

Leistungspunkte

15

Voraussetzungen

B.Sc. Chemie oder B.Sc. Wirtschaftschemie oder B.Sc. Biochemie und Molekularbiologie

Erwünschte Vorkenntnisse

Grundlagen der Organischen und Anorganischen Chemie und der Biochemie

Lernziele

Die Studierenden erlangen einen Überblick über die Grundlagen der Biologischen Chemie, Glycowissenschaften sowie der Strukturchemie und können diese auf aktuelle und wichtige Beispiele anwenden. Durch die interdisziplinäre Qualifikation in ausgewählten Bereichen der Biologie und Medizin erhalten die Studierenden die Fähigkeit zum Erkennen und Lösen komplexer fachübergreifender Probleme.

Lerninhalte
  • Vorlesung Bioanorganische Chemie: Biochemie des Sauerstoffs (Sauerstofftransport, Oxidasen, Oxygenasen, Superoxid- und Peroxid- Dismutasen); ein-, zwei- und dreikerniger Kupferenzyme, Hämenzyme, ein- und zweikernige Nichthäm-Eisen-Enzyme, Oxotransfer, Elektronentransfer, Hydrogenasen, Nitrogenasen, Photosynthese, Zinkenzyme.
  • Vorlesung Bioorganische Chemie: Molekulare Diversität, molekulare Struktur und biologische Funktion; Biologie und Chemie von Biomakromolekülen, molekulare Grundlagen von Zellorganellfunktionen, Mechanismen, Methoden und Konzepte der Biologischen Chemie und der Glycowissenschaften.
  • Vorlesung Molekulare Strukturbiologie: Proteinexpression und Reinigung, moderne Synthesetechniken für Proteine, fluoreszierende Proteine, Einbau nicht- natürlicher Aminosäuren, kinetische und zeitaufgelöste Proteinkristallographie
  • Praktikum: Im Praktikumsteil Bioanorganische Chemie sollen Modellverbindungen zu den Themen Sauerstofftransport, metallvermittelte Hydroxylierungsreaktionen und Stickstoff-Fixierung hergestellt und charakterisiert werden. In der bioorganischen Chemie sollen Experimente und Methoden zur Untersuchung bakterieller Adhäsion (u. a. ELISA) behandelt werden. In der Molekular- und Strukturbiologie sollen Experimente zu den Themen Röntgenstrukturaufklärung von Proteinen und Molecular Modelling durchgeführt werden. Das Praktikum schließt mit einer Abschlussarbeit ab.

Coastal Evolution and Protection

 

General information

Course name Coastal Evolution and Protection
Course type  
Course code S126
Course coordinator Prof. Dr. R. Mayerle
Faculty Faculty of Mathematics and Natural Sciences
Examination office Examination Office Geography and Geosciences
Short summary The first part of the course deals with hydrodynamic processes and their response on the coastline. The second part describes the physical processes acting on different types of coastlines, their contribution to the evolution of modern coastal zones and their potential of major changes on coastlines in the future. The third part introduces concepts and practices adopted to protect the coastal environment within an exciting interplay of natural processes and human activities. The final part of the course brings the current practices in the modeling of morphological changes. Examples of the application of numerical models to the prediction of morphological changes over periods of 5-10 years will be presented.
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Report
Frequency Summer semester
   

Information about teaching language

Teaching language English
Minimum language requirement B2
Further information on the teaching language  
   

Information about requirements

Recommended requirements Preference is given to participants of the M.Sc. program Coastal Information Systems.
   

Information about course content, reading list and additional information

Course Content Students will be introduced into different kinds of coastal processes on a multidisciplinary basis. They will be provided with knowledge on the evolution of modern coastal zones as a result of physical forcing by considering qualitative and quantitative aspects of water waves, tides and currents. This knowledge is crucial for the assessment of different coastal construction projects and will also be used in numerical modeling of relevant coastal processes. As a result, the students will be able to understand and characterize coastal modification and evolution by natural and anthropogenic processes, and to assess the whole span of coastal protection measures and to appraise their consequences for coastal environments with the help of numerical modeling techniques.
Reading list  
Additional information  

 

Computational Quantum Dynamics and Time-resolved Spectroscopy

 

MNF-chem5009

Computational Quantum Dynamics and Time-resolved Spectroscopy

Semesterlage / Dauer

Angebot habbjährlich, Beginn im Winter- oder im Sommersemester Dauer: 1-2 Semester

Modulverantwortliche(r)

Prof. Dr. Dassia Egorova, egorova@phc.uni-kieb.de

Lehrveranstaltungen

Bezeichnung der Lehrveranstaltung / Lehrende(r)

SWS

Status

Vorlesung

3 SWS

Pflicht

Praktikum

4 SWS

Pflicht

Seminar

1 SWS

Pflicht

Zahl der Plätze

15

Lehrsprache

Vorlesungen: Englisch; Praktikum und Seminar: Deutsch und Englisch

Arbeitsaufwand

Präsenzstudium: 120 h

Selbststudium: 40 h Seminarvortrag + 40 h Praktikumsbericht + 100 h Vorlesung Nachbereiten

Leistungspunkte

10

Voraussetzungen

B.Sc. in Chemie oder B.Sc. in Physik; Engblsche Sprache

Erwünschte Vorkenntnisse

Grundlagen der Quantenmechanik; Belegung von 1004D

Lernziele

  • understanding of basic ideas of modern methods of computational quantum dynamics and time-resolved spectroscopy;
  • understanding the interconnection between the system dynamics and measurable signals;

Lehrinhalte

  • Lectures (Vorlesung): overview of contemporary methods of computational quantum dynamics (reduced density-matrix approach, MCTDH, etc.);
  • system-field interaction and peculiarities of photoinduced dynamics;
  • overview of modern experimental methods of ultrafast spectroscopy (classification of techniques, their capabilities and interpretation challenges);
  • Introduction into computational methods of time-resolved spectroscopy (response- functions tradition versus new direct methods)
  • Practical part (Praktikum): implementation and application of the methods for simulation of quantum dynamics and of pertaining time-resolved spectroscopic signals for several representative model systems
  • Seminar: current trends in the field (literature analysis and discussion, students' talks on topics of their scientific interests)

Freshwater & Wetland Ecosystems – Field Studies

 

General information

Course name Freshwater & Wetland Ecosystems – Field Studies
Course type  
Course code S139
Course coordinator Prof. Dr. K. Dierßen
Faculty Institute for Ecosystem Research
Examination office  
Short summary This module focuses on the structure and function of water ecosystems and wetlands. Focus will be analysis of direct interaction between ecosystem types of special importance for nature and resource conservation. Special attention will be given to the reactions of biocenosis to anthropogenic environmental changes. Students will organise and conduct lab projects in groups, as well as participate in excursions. Reports about data management, analysis and presentation method mark the end of each teaching unit.
   

Information about study level

Study level Bachelor, Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Protocol
Frequency Summer semester
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements Basic knowledge of biology, chemistry, plant alimentation and plant cultivation
   

Information about course content, reading list and additional information

Course Content Students are able to measure principle ecological processes (e.g. Flood dynamics, sedimentation, primary production, etc.) within ecosystems and to recognize the triggering biotic and abiotic structures. They are able to evaluate the possibilities, limits and informative value of field data for ecosystem conservation and management.
Reading list  
Additional information  

 

Genetically Modified Plants

 

General information

Course name Genetically Modified Plants
Course type Lecture and Internship
Course code AEF-agrig012
Course coordinator Prof. Dr. Christian Jung
Faculty Faculty of Agricultural and Nutritional Sciences
Examination office pruefungsamt@agrar.uni-kiel.de
Short summary Techniques for plant transformation, vectors, reporter genes, Identification of genetically modified plants, main features of genetically modified plants used in plant breeding, ecological and economic implications of genetically modified plants, legal aspects, worldwide adoption of genetically modified plants in agriculture
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation  
Frequency Summer Term
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements  
   

Information about course content, reading material, and additional information

Course Content The students learn about production of genetically modified plants and they will understand how genetically modified plants are employed in plant breeding and plant production
Reading list  
Additional information  

 

GIS and Population Dynamics in Landscapes

 

General information

Course name GIS and Population Dynamics in Landscapes
Course type Exercise, Seminar
Course code AEF-EM036
Course coordinator Prof. Dr. Tim Diekötter
Faculty Faculty of Agricultural and Nutritional Sciences
Examination office pruefungsamt@agrar.uni-kiel.de
Short summary Based on provided data and on public available data retrieved by the students, participants will indicate,
characterize and separate geodata and topical data. Data bases and GIS-Systems will be combined to sup-
port the spatial analysis of survey data of mammals or birds.
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Project work
Frequency Summer and winter semester
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements Students should have basic skills in working with GIS-Systems.
Furthermore, some proficiency in using spreadsheets and data bases would be beneficial. Additionally,
basic knowledge of population dynamics of animals in landscapes is recommended.
   

Information about course content, reading material, and additional information

Course Content Students understand the differences among the geometric objects polygon, line, and point and are able to
use them in GIS as basic units to depict and analyze population dynamics at the landscape level. Further-
more they are able to build thematic maps using these geometries. The participants are competent to work
with  public available spatial data (
EU-Directive INSPIRE, climate data). They will require skills to organize survey data for processing in
GISand will be able to understand the relevance of geographic coordinate systems.
Reading list  
Additional information  

 

Introduction to Numerical Mathematics in Chemistry

 

chem5014

Introduction to Numerical Mathematics in Chemistry

Semester / Duration

Summer or Winter Semester, following request Duration: 1 Semester

Responsible Professor

Prof. Dr. Bernd Hartke,  hartke@pctc.uni-kiel.de

Courses of Studies

M.Sc. Chemistry and Business Chemistry: from the 1st semester onwards; export to other study subjects: upon request

elective

Classes

Name of Class / Lecturer

SWS

Status

Lecture Introduction to Numerical Methods Prof. Dr. B. Hartke, N.N.

2 SWS

compulsory

Practical course: programming of numerical methods Prof. Dr. B. Hartke, N.N.

2 SWS

compulsory

Number of Participants

15

Language

German or English (as needed)

Work Load

Contact Hours: 56 h

Supervised Programming/Calculations (PC-Lab), Self Study: 94 h

Credit Points

5

Conditions

Modules MNF-chem0102/0202 „Mathematics for Chemists 1&2“ or equivalent

Desired Prerequisites

Module MNF-chem0503

Goals

Basic introduction to numerical methods and their computer implementation, selected for their usefulness in chemistry

Contents

  • Crash course computer programming: Fortran
  • Integration: Euler, Simpson, Gauß
  • Random numbers and Monte-Carlo algorithms
  • Ordinary differential equations: Euler, Runge-Kutta
  • Systems of differential equations
  • Systems of linear equations, matrix inversion
  • Linear and non-linear regression, Spline interpolation
  • Matrix diagonalization: Jacobi
  • Root search: bisection, Newton

Meereschemie / Marine Chemistry

 

MNF-chem 2004E

Meereschemie

Semesterlage / Dauer

Angebot jährlich, Beginn im Winter- oder im Sommersemester Dauer: 2-3 Semester

Modulverantwortliche(r)

Prof. Dr. Arne Körtzinger, akoertzinger@geomar.de

Studiengang / -gänge

M.Sc. Chemie: 1. - 3. Fachsemester

Wahlpflicht

Lehrveranstaltungen

Bezeichnung der Lehrveranstaltung / Lehrende(r)

SWS

Status

Es sind 3 Vorlesungen aus der folgenden Liste* zu wählen:  

Current Topics in Marine Biogeochemistry I (Vorlesung) Prof. Dr. Arne Körtzinger

Prof. Dr. Ulf Riebesell  

Atmospheric Chemistry (Lecture + Seminar) Prof. Dr. Christa Marandino  

Air-Sea Gas Exchange (Lecture + Seminar) Prof. Dr. Christa Marandino  

Stoffkreisläufe im Meer (Vorlesung) PD Dr. Hermann Bange  

Klimarelevante Spurengase im Ozean (Vorlesung) PD Dr. Hermann Bange  

*Die Liste wird ggfs. durch weitere Vorlesungen der Meereschemie erweitert. Aktuelle Informationen besitzt der Modulberater.

     

2 SWS      

2,5 SWS    

2,5 SWS    

2 SWS    

2 SWS

     

Wahlpflicht      

Wahlpflicht Wahlpflicht Wahlpflicht Wahlpflicht

Die folgende Veranstaltung ist im Winter- oder Sommersemester zu belegen:  

Current Topics in Marine Biogeochemistry I/ II (Seminar) Prof. Dr. Arne Körtzinger

Prof. Dr. Ulf Riebesell

     

2 SWS

     

Pflicht

Meereschemisches    Arbeitsgruppenpraktikum Prof. Dr. Arne Körtzinger

Prof. Dr. Christa Marandino PD Dr. Hermann Bange

5 SWS

Pflicht

Zahl der Plätze

15

Lehrsprache

Deutsch oder Englisch

Arbeitsaufwand

Präsenzstudium: 212 h

Selbststudium: 238 h

Leistungspunkte

15

Voraussetzungen

Erfolgreich absolviertes Modul MNF-chem 0406D im Studiengang B.Sc Chemie.

Ist dies nicht der Fall, so ist dieses Modul im Wahlbereich chem 3001 zu wählen (nach Möglichkeit ab dem 1. Fachsemester des Masterstudiums).

Lernziele

Die Studierenden erhalten vertiefte Kenntnisse in zentralen Themen der Meereschemie und marinen Biogeochemie und können diese auf aktuelle Probleme der Meereschemie anwenden. Sie verfügen über das Grundverständnis der relevanten Systeme und Prozesse der Meereschemie mit Schwerpunktsetzung auf Stoffkreisläufen und Atmosphäre-Ozean-Stoffaustausch und im Hinblick auf den Einfluss globaler Veränderungen. Die Studierenden kennen die relevanten Systeme und Prozesse des marinen Kohlenstoffkreislaufs und seiner anthropogenen Veränderung. Sie erlangen die Fähigkeit zur informierten und kritischen Teilnahme an der öffentlichen Diskussion zu klimarelevanten Fragestellungen.

Lehrninhalte
  • Der marine Kohlenstoffkreislauf und seine anthropogene Störung,
  • Marine Stoffkreisläufe (N, P, S etc.),
  • Klimarelevante Spurengase im Ozean,
  • Atmosphärenchemie,
  • Ozean-Atmosphäre-Gasaustausch,
  • Moderne Methoden der Meereschemie,
  • Aktuelle Themen und laufende Forschungsarbeiten der marinen Biogeochemie.

Molecular Structure and Molecular Dynamics

 

MNF-chem1004C

Molecular Structure and Molecular Dynamics

Semester / Duration

Annually: Start in Winter or Summer Semester Duration: 2 Semesters

Responsible Professor

Prof. Dr. Friedrich Temps, temps@phc.uni-kiel.de

Courses of Studies

M.Sc. in Chemistry: 1. – 3. Semester

Compulsory

M.Sc. Business Chemistry: 1. – 2. Semester

Compulsory

Classes

Name of Class / Lecturer

SWS

Status

Lecture Laser Spectroscopy - Concepts and Methods (winter semester)

Prof. Dr. F. Temps

2 SWS

Compulsory

Lecture Modern Methods in Mass Spectrometry (winter semester)

Prof. Dr. J. Grotemeyer

2 SWS

Compulsory

Lecture Modern Concepts in Chemical Reaction Dynamics (summer semester)

Prof. Dr. G. Friedrichs

2 SWS

Compulsory

Lab Course Laser Spectroscopy and Mass Spectrometry (summer semester, six weeks in second half)

Physical Chemistry Professors and Lecturers

4 SWS

Compulsory

Seminar on Modern Methods in Laser Spectroscopy and Mass Spectrometry (summer semester, six weeks in second half)

Physical Chemistry Professors and Lecturers

1 SWS

Compulsory

Number of Places

Lectures and Seminar: 20; Lab Course: 10

Language

Lectures: German or English; with participation of foreign guest students English Lab Course and Seminar: German and English

Work Load

Contact Hours: 196 h

Self Study: 254 h

Credit Points

15

Conditions

B.Sc. in Chemistry, Biochemistry and Molecular Biology or Physics

For the lab course: completed module chem1003 (molecular spectroscopy) or two lectures from chem1004C

Goals

The students acquire advanced competences on modern methods and current research topics in Physical Chemistry, are brought up to the current research state and develop the ability to formulate and discuss ongoing research issues.

Contents

  • Laser spectroscopy: Electromagnetic radiation and the interaction of electromagnetic radiation and matter, operation principle of lasers, lasers as spectroscopic light sources, nonlinear optics, Doppler-limited absorption and fluorescence spectroscopy, nonlinear and multiphoton spectroscopy, Raman spectroscopy and four wave mixing, laser spectroscopy in molecular beams, double resonance, time-resolved and ultrafast laser spectroscopy, coherent processes, spectroscopy of collisions, single molecule spectroscopy, new methods and applications of laser spectroscopy;
  • Mass spectrometry: Historical evolution from basic devices to modern spectrometers and ionization methods (EI, CI, FAB, ESI, MALDI), physical concepts of important mass spectrometer types (sector-field, quadrupole, time-of- flight, ion trap, and ion cyclotron resonance mass spectrometers), applications in different fields of chemistry and biochemistry, especially on biomolecules (peptideand protein analytics), decay reactions of organic and inorganic compounds in a mass spectrometer, analysis and interpretation of mass spectra, application of MALDI post-source decay (PSD) and tandem mass spectra (ESIMS/MS) for peptide sequence analysis and identification of post-translational modifications (e.g., phosphorylation), structure analysis by mass spectrometric techniques (CID, SID, photodissociation);
  • Reaction dynamics: electronic states and potential energy hypersurfaces of polyatomic molecules, primary photophysical and photochemical processes, breakdown of the Born-Oppenheimer approximation, vibronic coupling and non- adiabatic transitions; femtochemistry; dynamics of energy transfer processes; modern concepts ant theories of unimolecular reactions, normal and local modes, intramolecular vibrational energy redistribution (IVR), non-statistical dynamics; combustion chemistry, modern concepts in heterogeneous catalysis, dynamics of surface reactions.
  • The specific contents are determined by the responsible professors.
  • Practical class: Selected experiments in spectroscopy (especially laser spectroscopy) and mass spectrometry (MB-FTMW spectrum of van der Waals molecules, FTIR spectroscopy of polyatomic molecules, laser induced fluorescence (LIF), ion imaging, MALDI, Raman spectroscopy, femtosecond spectroscopy, scanning tunnelling microscopy);
  • Seminar: Selected topics in laser spectroscopy, mass spectrometry and reaction dynamics; introduction to ongoing research

 

Physical Chemistry Statistical Thermodynamics

 

MNF-chem2003

Physical Chemistry Statistical Thermodynamics

Semester / Duration

Annually: Summer Semester Duration: 1 Semester

Responsible Professor

Prof. Dr. Jürgen Grotemeyer, Email: grote@phc.uni-kiel.de

Course(s) of Studies

M.Sc. Chemistry: 2. Semester

Compulsory

M.Sc. Business Chemistry: 1. – 2. Semester

Elective

M.Ed. Chemistry (2-Fach): 1. – 3. Semester

Elective

Classes

Name of Class / Lecturer

SWS

Status

Lecture on Statistical Thermodynamics Prof. Dr. Jürgen Grotemeyer

2 SWS

Compulsory

Exercise Class on Statistical Thermodynamics Prof. Dr. Jürgen Grotemeyer

1 SWS

Compulsory

Number of Places

Lecture: 30; Exercise Class: 30

Language

English

Work Load

Contact Hours: 42 h

Self Study: 108 h

Credit Points

5

Conditions

B.Sc. in Chemistry or Business Chemistry

desired knowledge

 

Goals

The students learn the foundations, concepts and methodology of statistical thermodynamics. Next to the the basic concepts, the module focuses on the application of these concepts on practical examples. The students develop an understanding, how statistical thermodynamics forms a bridge from the molecular properties to the macroscopic properties of gases, liquids and solids.

Contents

  • Basic postulates of statistical thermodynamics: Boltzmann’s definition olf the entropy, elements of probability theory and combinatorics, binomial distribution, thermodynamics of a system of elements with two energy states;
  • Systems of independent particles: Polynomial distribution, Lagrange multipliers, Boltzmann- distribution, molecular partition function of the electron in a box, ideal gas, partition function of the harmonic oscillator, Einstein’s model of solids, semiclassical approximation, state integrals of translation, rotation,a nd vibration, equipartitioning law;
  • Systems of interacting particles: The Gibbs ensemble (microcanonical, macrocanonical), relation to the chemical potential, canonical state integrals and partition function, ideal gas and van-der-Waals gas, cluster expansion of the molecular partition function;
  • Multi-component systems: Entropy of mixing, Gibbs paradox, partition function of mixtures, van-der-Waals theory of mixtures, Bragg-Williams model, phase transitions, Landau theory;
  • Systems of reacting particles: Variational calculation of the equilibrium composition, statistical expression for the equilibrium constant, transition state theory;
  • Quantum statistics: Analysis of the partition function for fermions and bosons, ideal Bose gas, Bose-condensation, ideal Fermi gas, theory of metals.

 

Principles of Ecosystem Analysis

 

General information

Course name Principles of Ecosystem Analysis
Course type Modul
Course code AEF-EM011
Course coordinator Dr. rer. nat. Felix Müller
Faculty Faculty of Agricultural and Nutritional Sciences
Examination office Faculty of Agricultural and Nutritional Sciences
Short summary Basics of system analysis and ecosystem theory, application of hierarchic indications concepts for represen-
tation of fluctuations in and between systems of different scales. Human-environmental interactions are ana-
lysed using DPSIR and based on the data of the european environmental agency. The analysis of utilization
of natural resources include land-use conflicts between agriculture, environmental protection, urban expan-
sion, water management, tourism etc.
   

Information about study level

Study level Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Seminar paper
Frequency Summer Semester
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements Basic knowledge in ecological processes and structures.
   

Information about course content, reading list and additional information

Course Content Students are familiar with basics of system analysis and are able to analyse complex interactions in human-
environmental systems.
Reading list  
Additional information  

 

Quantenmechanik in Theoretischer Chemie / Quantum mechanics in theoretical chemistry

 

MNF-chem5012

Quantenmechanik in Theoretischer Chemie

Semesterlage / Dauer

Angebot jährlich, Beginn im Sommersemester Dauer: 1 Semester

Modulverantwortliche(r)

Prof. Dr. Dassia Egorova, egorova@phc.uni-kiel.de

Studiengang / -gänge

B.Sc. Chemie: 4. - D. Fachsemester B.Sc. Physik: 4. - D. Fachsemester Andere Fachrichtungen nach Absprache

Wahl

Lehrveranstaltungen

Bezeichnung der Lehrveranstaltung / Lehrende(r)

SWS

Status

Vorlesung/Übung

2 SWS

Pflicht

Seminar/Praktikum

2 SWS

Pflicht

Zahl der Plätze

20

Lehrsprache

Deutsch oder Englisch (nach Wahl der Studierenden)

Arbeitsaufwand

Präsenzstudium: 48 h

Selbststudium: 102 h

Leistungspunkte

5

Voraussetzungen

keine

Erwünschte Vorkenntnisse

Grundlagen der Quantenmechanik (z.B. MNF-chem0304); lineare Algebra (z.B. MNF-chem0202)

Lernziele

Auffassung der quantemechanische Beschreibung der Materie als Grundlage der Methoden Theoretischer Chemie.

Erweiterung des Horizonts im Bereich Theoretische Chemie. Erwerbung praktischer Erfahrung in quantenchemischen Rechnungen.

Lehrinhalte

  • Vorlesung/Übung: ausführliche Betrachtung der grundliegenden Konzepten der Quantenmechanik, mit dem Fokus auf Grundlagen der Quantenchemie und der Quantendynamik. Insbesondere: stationäre Schrödinger Gleichung und Eigenwertproblem,
    zeitabhängige Schrödinger Gleichung;
    Wasserstofatom und Atomorbitale, LCAO und lineare Variationsrechnung in Hartree-Fock, Elektronenspin und Slater-Determinanten;
  • Praktikum: einfache quantenchemische Rechnungen, Basissätze
  • Seminar: Vorträge der Studierenden zu historischen und aktuellen Themen der Theoretischen Chemie

Terrestrial Ecosystems – Field Studies

 

General information

Course name Terrestrial Ecosystems – Field Studies
Course type  
Course code S115
Course coordinator Prof. Dr. J. Schrautzer
Faculty Institute for Ecosystem Research
Examination office  
Short summary This module focuses on the population/community dynamics and physical processes in terrestrial and semi-terrestrial ecosystems. The course provides knowledge about principal geobotanical techniques, measurements to acquire plant physiological processes, population dynamics of plant species and succession processes within plant communities. Special attention will be given to different restoration concepts currently applied in Central Europe. Exercises are carried out in differently managed forests, wet and dry grasslands, mires and gravel pits.
   

Information about study level

Study level Bachelor, Master
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Report
Frequency Summer semester
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements Basic knowledge of biology, chemistry, ecology
   

Information about course content, reading list and additional information

Course Content Students are able to measure principle processes within ecosystems and to recognize their biotic and abiotic structure. They are able to evaluate the possibilities, limits and informative value of field data for ecosystem conservation and management.
Reading list  
Additional information  

 

Terrestrial ecozones and ecosystems

 

General information

Course name Terrestrial ecozones and ecosystems
Course type  
Course code S153
Course coordinator Prof. Dr. H.-R. Bork
Faculty Institute for Ecosystem Research
Examination office  
Short summary Global overview of ecozone characteristics (climate, topography, soils and sediments, vegetation, animals, human impact) Presentation  and  analysis  of  the  individual  ecozones  (polar  and subpolar   zone,   boreal   zone,   temperate   and   dry   midlatitudes, subtropics  with  Winter  rain,  humid  subtropics,  dry  tropics  and subtropics, subtropics with Summer rain, humid tropics), evaluation of the human impact in the individual ecozones (past and present) Presentation of case studies Discussion of future development of ecozones and ecosystems.
   

Information about study level

Study level  
Also possible for  
   

Information about credit points, evaluation and frequency

ECTS 6
Evaluation Report
Frequency summer and winter semester
   

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  
   

Information about requirements

Recommended requirements  
   

Information about course content, reading list and additional information

Course Content Students are familiar with the natural characteristics (climate, topography, soils and sediments, vegetation, animals) and the development (past, present, future) of ecozones and ecosystems; students are familiar with the varieties of human impact and their effects on ecosystems; students are able to differentiate, to interpret and to evaluate natural processes and the effects of specific human activities on global, zonal and regional scales.
Reading list  
Additional information  

 

Theoretical Chemistry / Computational Chemistry

 

MNF-chem1004D

Theoretical Chemistry / Computational Chemistry

Semester / Duration

Annually: winter or summer term Duration: 2 Semesters

Responsible faculty

Prof. Dr. Bernd Hartke, hartke@pctc.uni-kiel.de , Prof. Dr. Dassia Egorova,egorova@phc.uni-kiel.de

Degree programme

M.Sc. Chemie: 1. – 3. Fachsemester

M.Sc. Physik: 1. – 3. Fachsemester

M.Sc. in Business Chemistry: 1. – 2. Fachsemester

Compulsory elective (Wahlpflicht)

Classes

Name of Class / Lecturer

SWS

Status

Lectures on Theoretical Chemistry by Prof. Hartke, summer term only

2 SWS

compulsory

Lecture and tutorials on Quantum Mechanics and Quantum Dynamics by Prof. Egorova

2 SWS

compulsory

Lectures on Molecular Modelling by Prof. Herges, winter term only

2 SWS

compulsory

Practical part by Prof. Hartke

3 SWS

compulsory

Practical part “Quantum dynamics with MCTDH” by Prof. Egorova

3 SWS

compulsory

Practical part by Prof. Herges

2 SWS

compulsory

Number of participants

15

Language

German or English (as needed)

Work Load

Classes: 200 h Self study: 250 h

Credit Points

15

Conditions

B.Sc. in Chemistry/Business Chemistry/Biochemistry/Physics or related discipline

Prerequisites (desired and recommended)

Basic lnowledge on clasical and quantum mechanics, MNF-chem0304, MNF-chem0503

Goals

Extension of knowledge in areas of molecular mechanics, quantum chemistry and quantum dynamics; development of capabilities to apply this knowledge as well as modern computational methods to particular problems of master and PhD projects.

Contents

  • Classical methods of molecular mechanics and molecular dynamics (force fields, MD, thermodynamics, Monte Carlo),
  • Quantum mechanics: formalism and exactly solvable problems; approximate methods (perturbation theory, variational principle); many-particle systems; diatomic systems; Basic principles of quantum chemistry (Hartree-Fock),
  • Quantum chemistry: SCF, DFT, electron correlation (CI, CC, MP2, MCSCF/CASSCF),
  • Quantum dynamics: Born-Oppenheimer, potential surfaces, wave packets, densitymatrix methods, MCTDH,
  • Practical part: force-filed and MD simulations, development of own computer codes,MCTDH,
  • Seminar talks.