Material Science - Advanced Materials A


General information

Course name Advanced Materials A
Course type Modul (Lecture and Exercise)
Course code Mawi 705
Course coordinator Prof. Dr. F. Faupel / Dr. O. Riemenschneider
Faculty Faculty of Engineering
Examination office  
Short summary Advanced Materials A - Metals Advanced Materials A - Polymers

Information about study level

Study level Master
Also possible for  

Information about credit points, evaluation and frequency

ECTS 8 (6 SWS)
Frequency Winter and Summer Semester

Information about teaching language

Teaching language English
Minimum language requirement B1
Further information on the teaching language  

Information about requirements

Recommended requirements Basic lecture mathematics Basic lecture physics Basic lecture chemistry

Information about course content, reading list and additional information

Course Content Metals   Alloys Thermodynamic considerations Intermetallic phases Mechanical Properties Plastic deformation in single crystals via dislocations Deformation twinning Deformation of polycrystals Creep Fracture Solid solution hardening Thermally Activated Processes Diffusion Recrystallization Solidification of Metallic Melts Transformation in the Solid State Particle Hardened Alloys   Polymers   Properties and Classification of Plastics Binding Forces and Structure Polymer Synthesis Polymers in Melts and Solutions Thermodynamics and chain kinetics Crystallization and Glass Formation Mechanical Properties Dielectric and Optical Properties Conducting Polymers Sorption, Diffusion and Permeation Chemical and Physical Aging, Recycling Plastics technology
Reading list

•    P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge 1996 (German edition available)

•    K. Easterling, Modern Physical Metallurgy, Butterworths 1983

•    Cottrell, An Introduction to Metallurgy, The Institute of Metals 1995 (reprint at 1975 edition)

•    N. Stoloff, Physical Metallurgy and Processing, Chapman 1994

•    G. Gottstein, Physikalische Grundlagen der Materialkunde, Springer 1998 (German)

•    H. Böhm, Einführung in die Metallkunde, B. I. 1992 (German)

•    E. Hornbogen und H. Warlimont, Einführung in die Metallkunde, Springer 1991 (German)

•    R.E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, PWS-Kent 1992

•    R.E. Smallman and R.J. Bishop, Modern Physical Metallurgy of Materials Engineering, Butterworth/Heinemann/1999

•    R. Cahn und P. Haasen (Eds.), Physical Metallurgy, Elsevier Science 1996

•    R.J. Young, P.A. Lovell: Introduction to Polymers, Chapman & Hall 1991.

•    L.H. Sperling: Introduction to Physical Polymer Science, John Wiley 1992.

•    U. Eisele: Introduction to Polymer Physics, Springer 1990.

•    N.G. McCrum, C.P. Buckley, C.B. Bucknall, Principles of Polymer Engineering, Oxford Science Publications 1995.

•    G. Menges: Werkstoffkunde Kunststoffe, Hanser 1990 (German)

•    G. W. Ehrenstein: Polymerwerkstoffe, Hanser 1978 (German)

W. Retting, H.M.Laun: Kunststoffphysik, Hanser 1991 (German).

Additional information Workload: 60 h lecture (course attendance) 30 h exercise (course attendance) 90 h exercise (self-organized studies) 60 h lecture (revision)   Learning Outcome: Knowledge The module aims at making the students familiar with the relation between structure and resulting properties of metallic and organic materials. Emphasis will be placed on mechanical properties.   Skills The students will learn how to apply their knowledge on basic materials science and on solid state physics to understanding the design of advanced metallic and organic materials. Competences The students will be able to understand the current literature on metallic and organic materials and to deal with them in research, development, and production.